SUBJECT OVERVIEW # GRADE 7 (YEAR 2) | Unit title | Key | Related | Global | Statement of | MYP | ATL Skills | Content | |--|---------------|----------------------------|---|--|---|---------------------------------------|---| | | Concepts | Concepts | Context | inquiry | Objectives | | | | 1. What's next? | Logic | Generalization
Quantity | Scientific and
Technical
Innovation | Mathematical logic
helps us to find
general rules in
quantities and
relationships and to
make exciting,
innovative
discoveries. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Creative thinking | Types of numbers Negative numbers Highest common factor Lowest common multiple Operations with positive and negative numbers Order of operations (BEDMAS) | | 2. What really makes the world go round? | Relationships | Change
Simplification | Globalization
and
sustainability | Financial, personal and economic change can be understood and simplified using proportional relationships like ratios and percentages. | A- Knowing and Understanding B-Investigating Patterns C- Communication D- Application in real-world contexts | Thinking
Communication
Transfer | Addition & subtraction of fractions. Multiplication and division of fractions Conversions across fractions, decimals and percentages. Calculating a fraction and percentage of a quantity. Simplification of ratios. Sharing using ratios. | | | | | | | | | Dividing quantities into ratios Proportional reasoning and logic | |--------------------------------------|---------------|----------------------------|---------------------------------|---|---|--|---| | 3. How can we bring things together? | Relationships | Patterns
Simplification | Identities and
Relationships | Identifying and using patterns and rules is the key to simplifying relationships, in life and in algebra. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Critical thinking Self-management | Classify like terms. Identify variables, constants, and coefficients. Summarise expressions by simplifying them. Factorisation of terms Expansion of terms | | 4. Fact or fiction, truth or lies? | Form | Systems,
Patterns | Fairness and development | Fair forms of communication help us to reveal patterns and improve our truth-telling systems. | A- Knowing and Understanding B-Investigating Patterns C- Communication D- Application in real-world contexts | Collaboration
Critical-
Thinking | Defining and explaining statistical terms Primary & secondary data sources Collecting and organising data Tabulating results Classifying and ordering data Data representation: Histogram Line graph Pictogram Dot and bubble plots Scatterplot Stem and Leaf Bar chart | | | | | | | | | Pie chart Creative visualisations. Grouping and classifying data Infographics and Data visualisations Analysing data Using data to perform text analysis. Bias and fairness in data Sampling | |--|-------|------------------|--|--|---|------------------------------|---| | 5. Should we cross the bridge or keep everything in balance? | Logic | Change
Models | Personal and
Cultural
Expression | Unknowns and variables can be modelled and solved using algebraic logic, which can be expressed in different personal and cultural ways. | A- Knowing and Understanding B-Investigating Patterns C- Communication D- Application in real-world contexts | Transfer skill Communication | Construct algebraic expressions and equations that represent real-life situations. Solve one-step equations. Apply algebraic models to solve real-life problems. Select appropriate variables for their models. Select a method for solving equations. Verify that equations are valid through substitution. Some students could Solve equations with multiple operations, | | | | fractions, negative | |---|--|---------------------| | | | numbers, decimals | | | | and brackets. | | 6. How do we measure up? Space Measurement Space and Time Orientation in Space and Time Measurement is expressed in various forms to communicate the space around or within an object. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | | ### **SUBJECT OVERVIEW** ## GRADE 8 (YEAR 3) | Unit title | Key | Related | Global | Statement of | MYP | ATL Skills | Content | Summative | |--|----------|-------------------------------|---|--|--|---|--|------------| | | Concepts | Concepts | Context | inquiry | Objectives | | | assessment | | 1. How can we travel between dimensions? | Logic | Measurement
Generalisation | Scientific
and technical
innovation | The general properties of shapes and our spatial environment can be measured by logic and manipulated and created by technology. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Affective skills
Collaboration | Metric conversions Types of angles Angles at a point, line & parallel lines. Types of polygons Interior & exterior angles of a polygon Perimeter and area of 2D shapes Total surface area and volume of 3D shapes. Nets and surface areas | | | 2. How do we make choices? | Form | Equivalence
Representation | Fairness and development | Real-life
problems can be
represented by
different forms of
mathematics
which will yield
equal results and
a fair solution. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Organisation skills Communication skills | Identify points on a Cartesian plane using ordered pairs Sketch polygons on a Cartesian plane as well as their transformations Explore relationships between x- and y- coordinates and come up with an equation to represent them. Linear relations How to model relationships using algebra, tables of values, and graphs | | | 3 Fact or | Form | Systems, | Fairness and | Fair forms of | A- Knowing and | Collaboration | Developing linear equations and graphs Drawing straight line graphs Finding gradient and y-intercept Defining and explaining | |-------------------------|------|----------|--------------|---|--|-----------------------|--| | fiction, truth or lies? | | Patterns | development | communication help us to reveal patterns and improve our truth-telling systems. | B-Investigating Patterns C-Communication D- Application in real-world contexts | Critical-
Thinking | statistical terms Primary & secondary data sources Collecting and organising data Tabulating results Classifying and ordering data Data representation: Histogram Line graph Pictogram Dot and bubble plots Scatterplot Stem and Leaf Bar chart Pie chart Creative visualisations. Grouping and classifying data Infographics and Data visualisations Analysing data Using data to perform text analysis. Bias and fairness in data Sampling | | 4. Where's the proof? | Relationships | Simplification
Systems | Scientific
and technical
innovation | Finding relationships in closed systems can help us simplify and solve problems, using technology or otherwise. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Transfer skills Communication | Angles and lengths Revision of triangle types Introduction to trigonometry Pythagoras' theorem Trigonometric ratios | |------------------------------------|---------------|---------------------------|---|--|--|---------------------------------------|---| | 5. Where do conclusions come from? | Logic | Patterns
Quantity | Identities and relationships | Relationships
between variables
form patterns
which often
justify important
logical
conclusions. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Communication
Critical
thinking | Recall what the three measures of central tendencies are and how to calculate them. Present quartile data in box-and-whisker plots. Comment on the strength and type of correlation being observed, and on possible reasons for the outcomes in question. Select the appropriate measure of central tendency based on the context and on the types of numbers being examined. Explore how the correlation coefficient changes as data moves closer to and farther from the LOBF. Justify the reasons behind patterns that are present in the data. | | 6. What are | Relationship | Generalization | Personal and | Patterns found in | A- Knowing and | Communication | Calculate simple | Chance carnival | |--------------------|--------------|----------------|--------------|--|--|---------------|---|-----------------| | the chances? | Relationship | Patterns | cultural | relationships can | Understanding | Communication | probabilities. | Chance carmvar | | the chances. | | raterns | expression | be generalized to
help us make
predictions for
personal gain. | B-Investigating Patterns C-Communication D- Application in real-world contexts | Thinking | Different ways to visualize outcomes. Probability diagrams Mutually exclusive Independent events Dependent events Sets and Venn diagrams | | ## **SUBJECT OVERVIEW** # GRADE 9 (YEAR 4) | Unit | Key | Related | Global | Statement of | MYP | ATL Skills | Content | Summative | |--|---------------|----------------|--|--|--|---------------------------------------|---|--| | title | Concepts | Concepts | Context | inquiry | Objectives | | | assessment | | 1. In how many different ways can we express the same thing? | Form | Patterns | Globalization
and
sustainability | Numbers in
different forms
give us a variety
of ways to predict
patterns and think
about problems of
global
significance. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in | Communication
Creative
thinking | Number sets. Standard form. Radicals and exponents. | Criterion A | | | | | | | real-world contexts | | | | | 2. Why does algebra look so clever? | Relationships | Simplification | Identities and relationships | Finding and expressing things in common helps us to simplify and improve relationships. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Organisational
Communication | Expansion Factorisation Substitution Linear equations Rearranging formulae Quadratics | Criterion A | | 3. Can you walk the line? | Logic | Equivalence | Orientation in space and time | Mathematical knowledge is built through logical structures, developed over time and transferred to equivalent situations | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Organisational
Transfer | Simplify, substitute into and solve equations, Plot points on an x-y grid (Cartesian plane), The difference between constants, coefficients and variables. Gradient and y-intercept. | Criterion A Descartes day Criterion C & D | | | | | | | | | Simultaneous equations | | |--|---------------|--------|--|---|--|--|--|--| | 4. How is technical innovation changing our ideas of public and private space? | Relationships | Models | Scientific and technical innovation | Modelling allows us to solve new spatial relationship problems arising from technical innovation. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Collaboration
Information
literacy | Revision and development of Pythagoras' Theorem. Using theorem to find lengths in abstract and real-world situations. Trigonometric ratios: Using relationships to find values of angles or sides, including inverses. Finding values on GDC or App. Extended Mathematics content: sine rule, cosine rule, radians, including simple conversion and definition. | | | 5. How can we move in space? | Logic | Space | Personal and
cultural
expression | Applying mathematical logic to spatial dimensions can open personal, cultural and social entrepreneurship opportunities | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Communication Critical-thinking | Length of a line segment Midpoint of 2 points Equations of vertical & horizontal lines. Parallel & perpendicular lines Vectors | The mobile app
(GRASPS)
Criterion D | | 6. How well do data reflect reality? | Relationships | Change | Fairness and development | We must take care
to ask the right
questions and to
measure the
correct data to
understand | A- Knowing and Understanding B-Investigating Patterns | Communication Transfer | Types of data Data collection Data representation Data analysis Cumulative frequency Correlation | Santo Andreo
High School
Criterion A & D | | | relationships so | C-Communication | Standard deviation | |--|-------------------------------|---------------------------|--------------------| | | we can use | | | | | information to make the world | D - Application in | | | | and better and | real-world contexts | | | | fairer place. | | | ## **SUBJECT OVERVIEW** # GRADE 10 (YEAR 5) | Unit title | Key
Concepts | Related
Concepts | Global
Context | Statement of inquiry | MYP Objectives | ATL Skills | Content | Summative assessment | |--|-----------------|---------------------|--|---|--|--|--|--| | 1. Making
the world a
fairer and
more equal
place? | Logic | Quantity | Fairness and development | The difference between quantities can be represented by inequalities, which allow us to solve and logically address inequality in Mathematics and life. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Affective skills Communication skills | Inequalities Representing inequalities Solving inequalities Linear programming Arithmetic Sequences General rule for sequences Number patterns in images Geometric sequences Fibonacci numbers | Multiplication
grid
Criterion A & B | | 2. How many forms has a quadratic? | Relationships | Representations | Globalization
and
sustainability | Representing relationships visually and algebraically can allow us to find and optimize 'best case scenarios and sustainable solutions. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Reflection skills Information literacy | Parts of a quadratic curve Graphing quadratic functions Shapes of quadratic curves Functions transformations Solving quadratic equations by factorisation Solving by completing the square Solving by quadratic formula. | Criterion A Criterion C: Backdrop | | 3. How do functions function? | Form | Generalization | Identities and relationships | Relationships
can be identified
by generalizing
data into various | A- Knowing and
Understanding | Organisation Communication | Linear functions Domain & range | Finding information from a model : Criterion A & D | | 4. 'What do I get by learning these things?' | Form | Justification | Orientation in space and time | models and forms, which allows us to solve and predict these real-world relationships. Statements about the spaces and shapes around us can be justified to show they are invariant through space and time. | B-Investigating Patterns C-Communication D- Application in real-world contexts A- Knowing and Understanding B-Investigating Patterns C-Communication | Reflection Media-literacy | Using functions to find values. Quadratic function Cubic function Exponential functions Parts of a circle Circle theorems i) angles subtended by the same arc ii) central-angle theorem iii) angles subtended | Proofs:
Criterion C & D
Criterion A | |--|-------|---------------|-----------------------------------|--|---|----------------------------|---|--| | | | | | and time. | D - Application in real-world contexts | | by diameter iv) cyclic quadrilaterals Trigonometric functions in quadrants of a circle Trigonometric identities | | | 5. The only sure thing? | Logic | Measurements | Personal and cultural expressions | An individual's understanding of risk and chance is highly dependent on both logic and their personal experience. | A- Knowing and Understanding B-Investigating Patterns C-Communication D- Application in real-world contexts | Collaboration Reflection | Definition of probability. How can probabilities change. Where does probability come from? Probability diagrams Mutually exclusive events Independent events Dependent events Permutations & combinations | Fact checking:
Criterion D
Criterion A | | 6. Am I | Dalational: | Crystoms | Scientific and | Your future | A Unaviga and | Self- | In this unit way will. Cuitarian A. D. | |----------------|---------------|----------|----------------|---------------------------------|--------------------------------------|------------|--| | ready? | Relationships | Systems | technical | relationship with | A - Knowing and Understanding | | In this unit you will: Criterion A, B, Find out how much C & D | | ready? | | | innovation | mathematics will | Understanding | management | • Find out how much you've learned and | | | | | Illiovation | be determined | | | | | | | | | | B -Investigating | Critical | where you need to | | | | | | by your | Patterns | thinking | revise or refresh. | | | | | | understanding of | | | Explore the most | | | | | | both traditional and innovative | C-Communication | | appropriate course in | | | | | | | | | Diploma Programme | | | | | | systems. | D - Application in | | Mathematics for you. | | | | | | | real-world contexts | | Take action by | | | | | | | | | considering ethical, | | | | | | | | | moral and social | | | | | | | | | implications of | | | | | | | | | mathematics. | | | | | | | | | Practise 'slow | | | | | | | | | judgement' rather than | | | | | | | | | 'no judgement' as a | | | | | | | | | good preparation for | | | | | | | | | Theory of Knowledge | | | | | | | | | (TOK). | | | | | | | | | Revision of | | | | | | | | | simultaneous | | | | | | | | | equations. | | | | | | | | | Transformation of | | | | | | | | | trigonometric | | | | | | | | | functions. | | | | | | | | | Revision of algebraic | | | | | | | | | equations. | | | | | | | | | Quadratic functions, | | | | | | | | | vertices and | | | | | | | | | intercepts. | | | | | | | | | Numbers and number | | | | | | | | | sets. | | | | | | | | | Probability — | | | | | | | | | combinations and | | | | | | | | | permutations. | | | | | | | | | Geometry, factals. | Data collection and probability. | | | | | Data representation. Trigonometric ratios
& Pythagoras. Angle & polygon
construction and
measurement. | |--|--|--|---| | | | | measurement. |